\begin{tabbing} plus{-}ify\=\{i:l\}\+ \\[0ex](${\it es}$; ${\it ff}$; ${\it is\_req}$; ${\it is\_ack}$; ${\it awaiting}$; ${\it owes\_ack}$) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$\forall$$i$:${\it ff}$.C, $j$:${\it ff}$.C.\+ \\[0ex]es{-}initially(${\it es}$;$i$;${\it owes\_ack}$($i$,$j$)) = ff $\in$ $\mathbb{B}$ \& es{-}initially(${\it es}$;$i$;${\it awaiting}$($i$,$j$)) = ff $\in$ $\mathbb{B}$ \\[0ex]\& (\=$\forall$$e$:es{-}E(${\it es}$).\+ \\[0ex](snd{-}it(${\it ff}$;${\it is\_req}$;$e$;$i$;$j$) $\Rightarrow$ (es{-}when(${\it es}$; (${\it awaiting}$($i$,$j$)); $e$) = ff $\in$ $\mathbb{B}$)) \\[0ex]\& (rcv{-}it(${\it ff}$;${\it is\_ack}$;$e$;$i$;$j$) $\Rightarrow$ (es{-}after(${\it es}$; (${\it awaiting}$($i$,$j$)); $e$) = ff $\in$ $\mathbb{B}$)) \\[0ex]\& (snd{-}it(${\it ff}$;${\it is\_req}$;$e$;$i$;$j$) $\Rightarrow$ (es{-}after(${\it es}$; (${\it awaiting}$($i$,$j$)); $e$) = tt $\in$ $\mathbb{B}$)) \\[0ex]\& (\=(es{-}loc(${\it es}$; $e$) = $i$ $\in$ Id\+ \\[0ex]\& ($\neg$(es{-}after(${\it es}$; (${\it awaiting}$($i$,$j$)); $e$) = es{-}when(${\it es}$; (${\it awaiting}$($i$,$j$)); $e$) $\in$ $\mathbb{B}$))) \\[0ex]$\Rightarrow$ (rcv{-}it(${\it ff}$;${\it is\_ack}$;$e$;$i$;$j$) $\vee$ snd{-}it(${\it ff}$;${\it is\_req}$;$e$;$i$;$j$))) \-\\[0ex]\& (snd{-}it(${\it ff}$;${\it is\_ack}$;$e$;$i$;$j$) $\Rightarrow$ (es{-}when(${\it es}$; (${\it owes\_ack}$($i$,$j$)); $e$) = tt $\in$ $\mathbb{B}$)) \\[0ex]\& (rcv{-}it(${\it ff}$;${\it is\_req}$;$e$;$i$;$j$) $\Rightarrow$ (es{-}after(${\it es}$; (${\it owes\_ack}$($i$,$j$)); $e$) = tt $\in$ $\mathbb{B}$)) \\[0ex]\& (snd{-}it(${\it ff}$;${\it is\_ack}$;$e$;$i$;$j$) $\Rightarrow$ (es{-}after(${\it es}$; (${\it owes\_ack}$($i$,$j$)); $e$) = ff $\in$ $\mathbb{B}$)) \\[0ex]\& (\=(es{-}loc(${\it es}$; $e$) = $i$ $\in$ Id\+ \\[0ex]\& ($\neg$(es{-}after(${\it es}$; (${\it owes\_ack}$($i$,$j$)); $e$) = es{-}when(${\it es}$; (${\it owes\_ack}$($i$,$j$)); $e$) $\in$ $\mathbb{B}$))) \\[0ex]$\Rightarrow$ (rcv{-}it(${\it ff}$;${\it is\_req}$;$e$;$i$;$j$) $\vee$ snd{-}it(${\it ff}$;${\it is\_ack}$;$e$;$i$;$j$))) \-\\[0ex]\& (\=((es{-}loc(${\it es}$; $e$) = $i$ $\in$ Id) c$\wedge$ (es{-}after(${\it es}$; (${\it owes\_ack}$($i$,$j$)); $e$) = tt $\in$ $\mathbb{B}$))\+ \\[0ex]$\Rightarrow$ ($\exists$${\it e'}$:es{-}E(${\it es}$). (es{-}causl(${\it es}$; $e$; ${\it e'}$) \& snd{-}it(${\it ff}$;${\it is\_ack}$;${\it e'}$;$i$;$j$))))) \-\-\- \end{tabbing}